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COMPUTATION OF THE ZEROS OF p-ADIC L-FUNCTIONS. II 

R. ERNVALL AND T. METSANKYLA 

ABSTRACT. The authors have carried out a computational study of the zeros of 
Kubota-Leopoldt p-adic L-functions. Results of this study have appeared re- 
cently in a previous article. The present paper is a sequel to that article, dealing 
with the computation of the zeros under certain conditions that complicate the 
original situation. 

1. INTRODUCTION 

This paper continues the authors' computational study, begun in [2], of the 
zeros of the Kubota-Leopoldt p-adic L-functions Lp(s, X). We will discuss 
four themes, all of which came up but were left aside in [2]. 

In the following, the article [2] is referred to as Part I. When referring to an 
individual section or proposition of that paper we write, say, ?1.3 or Proposition 
1.5. We retain the basic notation of Part I; in particular, p is an odd prime, 
fo (T) = E aj Ti denotes the Iwasawa power series determined by the first 
factor 0 of X, and iA = A stands for the A-invariant of this power series. 

Our first question, considered in ?2, concerns the computation of the zeros of 
Lp(s, X) when the second factor of X is nonprincipal. The remaining sections 
deal with the computation of the zeros T1, ... , TA of fo(T) under certain 
conditions that complicate the original situation discussed in Part I. Thus, in 
?3 there are two zeros T1 and T2 close to each other, ?4 introduces types of 
the Newton polygon of fo (T) different from our two basic types, and the final 
?5 shows how to compute zeros Tk lying in wildly ramified extensions of Qp . 

A sample of numerical results related to each of these sections is given in 
Tables VI-X at the end of the paper. 

We recall that a crucial step in the computation of a zero To of fo (T) is the 
determination of the extension E = Qp(To) and of an initial approximation to 
of To satisfying the condition 

fo (to) ? 0 (mod 72Y+ I) 

where 7r is a prime element of &E and y - v, (fg(To)). To accomplish this, 
one first reduces the possible candidates for E to a family of relatively few fields 
and expands To 7t-adically with unknown coefficients; then E and to will be 
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obtained by solving successively a sequence of approximation congruences 

fo(To) 0 (mod 7rm), m 1, 2,...,mO, 

denoted by fQrm) below. 
When describing the computation of To, we usually assume, to fix ideas, 

that aO = fo(O) does not vanish. If ao = 0, the procedure is essentially the 
same; one just excludes the zero To = 0, which is known to be simple, and then 
replaces f0(T) by f0(T)/T. In this case we say that f6(T) is of type Z. 

2. L-FUNCTIONS INVOLVING CHARACTERS OF THE SECOND KIND 

In this section we are concerned with the zeros s0 of Lp (s, 0 ftn), where y'n 
is a nonprincipal character of the second kind. Recall that Vn is of order pn 
and conductor pn+l (n > 1). We will discuss the questions of how to find 
examples of Lp (s , 0 qn) having a zero s0, and how to compute this so . 

Suppose we have found a zero To of some Iwasawa power series fo (T). 
By ?1.3, if there is a corresponding zero s0 of some Lp(s, Oqi2n), then s = 

log(1 + To)/log(1 +dp) and vp(To) = 1/(p- l)pn-I . In the range of our compu- 
tations, the only p-ordinals of To of this form are V3(To) = 1/2, v5(To) = 1/4, 
and V3(To) = 1/6, and the respective values of A are 2, 4, and 6 (or 3, 5, and 
7 when fo (T) is of type Z). Since, moreover, the coefficients of fo (T) in all 
examples are from 7pZ, Proposition 1.5(i) shows that To must belong to Q?p (gpn) 
in order that s0 lie in Ds, the domain of definition of Lp(s, X). 

The case v3(To) = 1/6, which leads to a wildly ramified extension Q3(To), 
will be studied in ?5. We found no example of this kind with To E Q3 (CO . 

As for the other two cases, it follows from Proposition 1.5(ii) that the con- 
dition To E Qp(Cp) is even sufficient for s0 to be a zero of a Lp(s, OqYi). We 
have the following practical criterion. 

Proposition 1. Let A = p - 1 and vp(ao) = 1, so that vp(To) = l/(p - 1). Then 
To E Qp(Cp) if and only if a01 = a=o. 
Proof. The Newton polygon of f6(T) is of the "first type" discussed in ?1.9. 
From that discussion it is seen that To E Qp( P-1 rp), where r is determined by 
the conditions 

To=_x7 (mod7rt2), 0<x<p, 

aoI + a, 0rxP- 1 0_ (mod p). 
Since Q?p (4p) = Qp( P- >p), the assertion follows. E 

For p = 5 our numerical material contains five examples with i = 4 and 
v5(ao) = 1, and one similar example of type Z. In all these, To 0 ?5 (C5). 
Four of the examples are exhibited in Tables IV and V of Part I; the remaining 
two are (5,5708,0) and (5, -12712, 1). 

Our main case is that of p = 3, A = 2, and v3(ao) = 1. Applying the 
criterion of Proposition 1 to the tables computed in Program A (Part I), one finds 
numerous examples of this case which give zeros of L3 (s, 0 VI) . Including some 
analogous cases with A = 3, we settled 13 examples of this kind completely. 

Before describing the computation, we observe that there are two characters 
VI mod 9, say q+ and qr_, identified by the equations V? (l + 3d) = - + ?2' 

where 7z = -3. A zero To with V3(To) = 1/2 may be written in the form 
To = 3b + c7t, where b, c E 23, C X 0 (mod 3). Then, by Proposition 1.3, the 
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number so = log( 1 + To)/log( 1 + 3d) corresponding to c ?1 (mod 3) is a zero 
of L3(s, 6 V+), in fact, the only zero of this function (under the assumption 
that A = 2). Its conjugate is of course the zero of L3(s, OVi) . 

After computing L3(s, 0), f6(T), To, and so in the usual way, we proceed 
with the computation of the function 

00 

L3(s, 0VI) =u'. 
i=O 

As in ?1.5, this means the approximation of u' by rational integers congruent to 
u' modulo a prescribed power pM; this makes sense since u' 0 as i -- oo. 
Here we make use of Washington's formula with FD = 9d in the way described 
in ??I.5, 1.11. A lower bound for vp(u') needed in the computation is provided 
by Proposition 2 below. 

Recall that 

(1) Lp(s, vy) = f(p(1 + dp)s - 1), 

where p = Vt(1 +dp)1, qg = YV . To check the correctness of our L3(s, 6O'i), 
we evaluated both sides of this formula for s = 1. As a final check it was 
verified that L3(so, 6 YOVI) vanishes mod iMl , where (see the end of ?I. 1 1) 

Ml = min (2M, M- 3 + minvt(uu)). 

By the remark at the end of the present section, Ml > M. 

Example. Let 0 be the character defined by (3, -1147, 1). The following 
table presents L3 (s, 0) (1 st column) and fo (T) (3rd column) according to 
the same principles as the Tables I-V in Part I; see ?I.10 for a description. 
The middle column lists the coefficients ul, ..., u6 of L3(s, 6V?); here, Xt = 

V/=. The coefficients u' with i > 6 are zero to the accuracy displayed in this 
column. 

0.11000 0.0200 ? 0.01227r 0.11000 
0.01122 0.0111 ?0.11027t 0.1102 
0.01020 0.0110 ? 0.0002t 1.100 
0.00011 0.0001 ? 0.02207r 0.20 
0.00102 0.0011 ? 0.00007 2.0 
0.00000 0.0000 ? 0.000lI7 0. 
0.00011 0.0001 ? 0.00007r 

The zeros of f0(T) are T1,2 = 0.10 ? 2.Oi (approximately), and the corre- 
sponding numbers s1 ,2= 0.0 ? (2.)z are the zeros of L3(s, 0VT) . (The upper 
and lower signs correspond to each other.) 

Table VI contains further examples of this kind. In Table VIa there are two 
similar examples with an additional pair of zeros of f6(T) and L3(s, 0). 

We conclude this section by proving the following estimate (cf. Proposition 
I.6). 

Proposition 2. For any y/ = yVn (n > 1), let Lp(s, tyi) = ,=O u'si. Then 

vp(u') > i 1 (i = 0, 1,...). 
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Proof. Considering the right-hand side of (1), we write 
00 

p(l +dp)s - 1 = p exp(slog(l + dp)) - 1 =E dis', 
1=o 

where do = p - 1 and di = p(log(1 +dp))'/i! for i > 1 . This gives the 
expansions 

00 

(p(l + dp)s 1)i= E dijsi (j = 0, 1,...) 
i=o 

with doo=1, dio=O (i? 1),and 

dij dt, .. dt, (i > O,;j > 1). 

We show that 

(2) vp(dij) > jvp(p - 1) + (1 - 1)i (i > 0, j > 0). 

This is trivial for j = 0; so let j > 1. Denote by j' the number of positive 
indices in a set {t1, .. , tl} with t1 + . + t1 = i. For simplicity of notation, 
assume that the positive indices are just t1, . .. , tj, so that 

Zvp(dt) = (j-j')V(p - 1) + vp(dt,). 
v=1 V=1 

Since vp(p - 1) < l/(p - 1) and vp(dtv) = tv - vp(t0!) > t4 - (t4 - l)/(p - 1) 
(V = 1, ..., j'), we obtain the estimate 

L vp (dtv ) >jvp(p -1) + (1- 1 ) E tv. 

This proves (2). 
Equation (1) now allows us to write 

Do J 00 0o J( 
U/= lim E aj E dijs' - lim = ajdij s 

i=o i=o i=o i=o i=o 

whenever s c Ds. Restrict s for a moment to the subset of Ds defined by 
vp(s) > 0. Then it follows, in view of (2), that 

00 00 00 \ 

E ui = E E aidij) Si 
i=O i=O j=O J 

(see Lemma in [3, p. 53]). Hence, 
00 

(3) U'/ = E ajdij (i=- , 1, . .. ), 
j=O 

and this together with (2) implies the proposition. O 
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Remark. Let, in particular, A = p - 1 and vp (ao) = 1 . Then the coefficients of 
the series for Lp (s, A Y/1 ) satisfy the stronger inequality 

v(u i + ?1I (i=0,1,...). 

This is seen from (3) and (2) upon observing that vp(aj) > 1 for j = 0, 
p - 2 and jvp(p - 1) ? 1 for i > p - 1. In the range of our computations, 
vp(u') attains this lower bound for most values of i. 

3. Two ZEROS CLOSE TO EACH OTHER 

This section continues our study of the case A = 2, vp (ao) = 2 in which the 
Newton polygon of fo(T) is of the "second type" considered in ?1.9. This case 
was settled under the assumption that the two zeros T1 and T2 (denoted by 
To and To" in ?1.9) satisfy vp(T1 - T2) < 2. We now describe how to deal with 
examples in which vp (T1 - T2) is bigger. As before, it is assumed throughout 
that T1 # T2. 

We begin with the following proposition that will also be needed in ?4. 

Proposition 3. If all the zeros T1, . .. , T, of fo (T) are pairwise distinct, then 

vp(fo(Tk))= Zvp(Tk-T]) (k= 1, ...A). 
j=1 
j4k 

Proof. By the p-adic Weierstrass preparation theorem (see ?I.2), 

fo(T) = uo(T)wo(T), 

where uo(T) is an invertible power series and wo(T) a monic polynomial of 
degree A having T1, ..., T, as its zeros. Differentiate this equation to obtain 
fo(Tk) = uo(Tk)w'(Tk) and, hence, vp(f6(Tk)) -v p(wb(Tk)). L 

Going back to the above case, suppose that the rational integers x, y, and 
r fulfil the conditions 

0 <x <p, 0 <y <p, r= 1 or g (a primitive root of p), 

T1,2 xp?YP rP (modp2). 

Such numbers are found in the way presented in jI.9. In particular, if y = 0, 
then vp(TI - T2) ? 2, and we may put 

Tk xp? + Zkp2 (mod p'/2) (k = 1, 2), 

where z1 and Z2 are either in Z or in 2[v/g]. Looking at the coefficient of 
p4 in the approximation congruence mod p5, we infer a condition 

do + dlZk + a2OZ20 (mod p), 

where do and d1 are rational integers determined by x and by the first digits 
of ao, ... , a4 

If the solutions z1 and Z2 of the last congruence are distinct, then 
vp (Ti - T2) = 2 and Krasner's lemma implies that Tk - xp E Qp (Zk) . Thus, 
E/Qp is unramified, and we have y = vp(f0'(Tk)) = 2 by Proposition 3. In this 
case the algorithm may be started with tk = xp + zkp2. 
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We found two examples of this kind, for the characters (3, 13564, 0) and 
(3, -11188, 1), both with E = Q3(Xr). They are presented in detail in Table 
VII. 

Secondly, suppose that z1 = Z2 = z. Then z E 2, and one proceeds with 
the congruence 

T1,2 xp + zp ?up2r (mod p3), 
where u E Z., 0 < u < p. Put 1Z = rp. To find u and r, one has to solve a 
congruence of the form ru2 = I (mod p), where I E ; this is in fact obtained 
from l(nc1l). If u 5 0, we see that E = Q?p(i) and vp(T1 - T2) = 5/2, 
and Proposition 3 gives y = v,(fg(Tk)) = 5. Hence, we may take t1,2 - 

XP + ZP2 ? Up27. 
In Table VII, the example for the character (3, 13784, 0) belongs to this 

category. Table Vlla shows two similar examples of type Z. 
If u = 0, i.e., vp(T, - T2) > 3, we are in the analogous situation we started 

from. There is no example of this in our material. 

4. VARIOUS TYPES OF THE NEWTON POLYGON 

We now show how to deal with some classes of the Newton polygon of fo (T) 
which differ from our two basic types. They are called Types 3-6 below; each of 
them was met in the computations and will be treated in a generality sufficient 
to settle our particular examples. 

The examples mentioned in this section appear in Table VIII unless otherwise 
stated. 

Type 3. vp(ao) > 2, vp(al) = 1, A= 2. 
The two zeros T1 and T2 satisfy vp(T,) = vp(ao) - 1 > 1 and vp(T2) = 1. 

Hence they lie in Qp . This is a slight variant of our "second type", and from 
?I.9 it is seen, on putting aO2 = 0, that one may start with tk = XkP (k = 1, 2), 
where x1 = 0 and x2 is the root of the congruence al 1 + a20x 0 (mod p). 

Examples of this kind are obtained for the characters (5, 3101, 0), (5, -4371, 
1), (11, -723, 1), the last two being of type Z . The example (3, -1399, 1) 
in Table II (Part I) also belongs to this family. 

Type 4. vp(ao)=c > 1, vp(ak) > c(l-k/IA) for k =1, I , A-1, (>1) 
prime to c and p. 

The Newton polygon has one nonzero slope, and this equals -c/A. As in 
the case of the "first type", the zeros To (= T1, ... , T,) are in fully ramified 
extensions E = Q?p( rp). Because c and p are prime to A, one easily verifies 
that 1y = v(), La;T, ) = (A - I)c. If A = 2, one has to solve for x and r the 
congruence aoc+a20rcx2 = (mod p), obtained from 6(72C+l), and then take 
to = xrc(. For A > 2 the procedure is similar but more complicated. 

We have two examples with c = 3 and A = 2, namely for (3, 1901, 0) and 
(5, 12056, 2), and one similar example of type Z, for (5, -7816, 1). Table 
III in Part I gives an example with (5, 1317, 0) in which c = 2 and A = 3. 

Type 5. vp(ao)=2, vp(aI)>2,A=4. 
As in Type 4, there is but one nonzero slope, this time equal to -1/2. The 

zeros T1, ... , T4 lie in fully ramified quartic extensions E = Qp (p) or, if 
this is not the case, either in quadratic or biquadratic extensions of Q?p (here 
"biquadratic" means "a composite of two quadratic"). 

An example of the former kind is given by (3, 1541, 0). The computation 



COMPUTATION OF THE ZEROS OF p-ADIC L-FUNCTIONS. II 397 

is analogous to that in Type 4; note that Proposition 3 yields y = 7 (see Table 
VIII). On the other hand, for the character (3, 4204, 0) one rules out the 
fields Q ( X?-3) by using F(70), and it turns out that the zeros are contained 
in Q3(V'3, V2) . In this case there is no zero of any L3(s, OIJn), n > 0, 
corresponding to To; indeed, V3 (log(1 + To)) = 1/2, and so v3 (so) = - 1/2. 

In these two examples, the approximate values of the zeros given in Table 
VIII are easily computed by hand. A third example of the same kind, not 
included in the tables, is (3, 7244, 0). In this case we have E = Q?( 

' -3). 
Type 6. vp(ao)>2, vp(al)=I, A>3, A-1 primetop. 
Among the zeros To = Tk, k = 1 , ... , ,there is one, say T1 , belonging to 

Qp and satisfying vp(T1) > vp (ao) - 1 > 1 . The other zeros satisfy vp(Tk) = 
I- 1) (k = 2, ..., A). For To = T1 , Proposition 3 yields 

y = Zvp(TiT)) = E 1. 
j=2 j=2 

Thus, it is sufficient to look at F(p3), and this gives to = xp with x _ -aO2la l 
(mod p). 

The computation of the remaining zeros is analogous to that in the "first 
type". In particular, E/Qp is a fully and tamely ramified extension of degree 
A - 1. We find that vp(Tk - Tj) = 1/(A - 1) for j-1= , A.. i j k, and so 
y = A - 1. 

To the first zero T1 there always corresponds a zero s1 of Lp(s, 0). The 
same holds true for T2, ..., TA in the case A < p, while the situation varies 
for A> p. 

Our examples with A = 3 < p are the characters (5, 4924, 2) and (7, -4072, 
5). The character (3, -25528, 1) has A = 5 (computed first by Kobayashi), 
and S2, ... , s5 lie outside of Ds. So also do S2, s3 in the example (3, 3512, 0), 
where A = 3. Compare this example with (3, 7804, 0) from Table VIa: here, 
too, - = 3 but s2 and s3 are zeros of L3 (s, 0 qi?). Finally, the character 
(3, -5051, 1) in Table V (Part I), for which fo(T) is of type Z, also fits this 
category. 

5. WILDLY RAMIFIED EXTENSIONS 

All examples of wildly ramified extensions E/Qp were found for p = 3. 
The degree of the extensions is 3 or 6. 

Consider first the case of cubic extensions. Let A = 3 and v3(ao) = 1, 
so that v3(To) = 1/3 and E/Q3 is indeed wildly ramified of degree 3. One 
may identify E (up to conjugates) by providing a cubic Eisenstein polynomial 
r(X) E Z3[X] such that E = Q3(7) with r(i) = 0. In the table below, the list 
of 11 such polynomials r(X) corresponds to a complete system of nonconjugate 
fields E. This list is extracted from results by Amano [1], who characterizes in 
this way all ramified extensions of degree p over any finite extension of ?p . 

We will give a further characterization of the fields E, better suited for their 
computational identification. Note that every r(X) is of the form 

r(X) = - 3aX2 - 3bX - 3c, 

where a, b, c E Z with c 1 (mod 3). Let ir and E be as above. We 
have 3 = it3, with e a unit of (<E, and from r(7r) = 0 it follows that 
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e = 1/(c + bit + air2). In particular, 6 = 1 (mod 7) . Write 
00 

e =+1 ? Z6 , Ev E {0,? 1}. 
V=1 

A straightforward calculation shows that our fields E can be identified by the 
triple (61, 62, 63) as indicated in the table. 

E r(X) (61, 62, 63) E r(X) (61, 62, 63) 

A1 X3-3X-3 (-1, +1,-1) C1 X3 + 3X2 - 12 (0, +1,-1) 
A2 X3+ 3X-3 (+1, +1, +1) C2 X3+ 3X2- 3 (0, +1, 0) 
Bj X3-3X2 - 12 (0,-1,-1) C3 X3+ 3X2+ 6 (0, +1, +1) 
B2 X3-3X2- 3 (0,-1, 0) P1 X3-12 (0, 0,-1) 
B3 X3- 3X2+6 (0, -1, +1) P2 X3-3 (0, 0, 0) 

P3 X3+6 (0,0,+1) 

Here the fields are labeled with A1, A2, B1, etc. The extension E/Q3 is 
cyclic for E = Cl, C2, C3 and pure for E = P1, P2, P3. 

We computed 17 examples in which the zeros belong to the fields of this table; 
eight of them were selected to be exhibited in Table IX. In the entire sample of 
17 fields, A1 and A2 occur five times each, supporting the natural hypothesis 
that the values of 61 be randomly distributed. 

The functions L3 (s, 0) and fo (T) were computed with the parameter q = 

16. This implies, by Propositions 1.12 and 1.7, that the coefficients aj are 
obtained mod 38-j (j = 0, ... , 7). It is seen below that this accuracy allows 
us to determine the field E in all examples but one, and to find the zeros 

00 

TO = EX,it (x, E {0, ?1}, xI 0) 
V=1 

to 1-4 x,-places. We computed To by hand, thus avoiding the rather tedious 
implementation of the arithmetic of the fields in question. The results were 
checked by computing f6(To). From ?1.3 it follows that the corresponding 
numbers so are not zeros of any L3(s, Oy/in); hence they are ignored. 

To find E and To, start with the approximation congruence f(it5). This 
reduces to the congruences 

ao? + a30x1-O, ao6II+aIIxI+a40-O (mod3), 

which give us xl and 61 . If 61 = -1 or + 1 , the field is A1 or A2, respectively, 
and the coefficients 62, 63, ... are determined by the equation e = 1/(1 ? 7t). 
Better approximations for To then follow easily from F(7"') for bigger expo- 
nents m. 

In Table IX, the characters (3, -3592, 1) and (3, 1781, 0) are examples 
giving the field AI . The latter requires slightly different techniques since v3(ao) 
= 2. In both examples, the zeros T,, T2, T3 lie in conjugate extensions 
generated by the roots it = itk of r(X) = 0 (k = 1,2, 3) . 

Similarly, the characters (3, 281, 0), (3, -311, 1), and (3, -2132, 1) yield 
examples in which E = A2. The first of these is also mentioned in ?1.10, with 
another normalization of r(X). The second example is of type Z, while the 
third shows a function f (T) with two zeros (one trivial) in Q(3. 

Here are the other examples of AI and A2 computed by us. 
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Example 1. For irk a zero of X3 - 3X - 3 (k = 1, 2, 3), 

(3, 1397, 0): Tk rk- k- k (mod ik), 

(3, 5368, 0) : Tk-7k- 7 -7?k7k (modik), 
(3 , 6712, 0) : Tk - 7 2 + 71 4 (mod 7k). 

Example 2. (3, -2920, 1): irk zero of X3 +3X-3 (k = 1, 2, 3), 

Tk-=7k + ?rk + (mod+ 7)k 

Example 3. (3, -4184, 1): T1 = 0, Si = 0, 

irk zero of X3 +3X-3 (k=2, 3,4), 

Tk -ik + -i ? (mod 7t) 

If 61 = 0, we compute 62 from the congruence 

-ao62 -a50x1 + a2l (mod 3), 

which is a consequence of f(ir6). 
Let first 62 = 1, so that E/Q3 is cyclic. Then f(i7) gives 63 and so fixes 

E. When computing further places for To, one should observe that E now 
contains all the three zeros of fo(T). 

We have two examples of cyclic fields, in fact, of E = C1. One, included in 
Table IX, is for (3, 2504, 0), the other is given below. 

Example 4. (3, 5624, 0): 7r zero of X3 + 3X2 - 12, 

T1 -_ 7 - T2 _-_r + ? 2 _ 7r 3 T3=-7 -72 (mod 7l)4 

Secondly, suppose that 62 = 0. Then E is a pure extension of Q3 and one 
finds 63 and x2 by solving simultaneously a pair of congruences produced by 
l(7T8) 

In Table IX, this case is represented by the characters (3, 4172, 0) and 
(3 , -1 144 , 1), which lead to the fields Q3 ( 12) and Q3 ( -6), respectively. 
The next two examples give our other characters of this kind. Example 6 in- 
troduces a case with i = 4; here the ultimate identification of E must be left 
open. 

Example 5. For irk a zero of X3 + 6 (k = 1, 2, 3), 

(3, 401, 0) Tk-7k +? i2(mod r3) 

(3 , 4472 , 0): Tk 7(k + Ek (mod ik). 

Example 6. (3, 6856, 0): T, 0.2201 , s1 = 2.000, 

irk zero of X3 - a (k = 2, 3, 4) with a = 4, 1, 

or -2, 
Tk-irk (mod ir). 

After this, it is also clear how to deal with 62 = -1 corresponding to the 
fields B1, B2, B3 . We have no example of these fields. 

Now let us turn to the case of sextic extensions. The basic case is the one 
with A = 6 and v3(ao) = 1. As usual, put E = Q3(To) = ?3(Z). 
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Proposition 4. For a fully ramified sextic extension E = Q3 (7t) , let c be the unit 
of the ring 6E defined by the equation 3 = c 7r6. Thefield E contains the subfield 
Q3(x/3) or Q?(v-3) according as e -1 or e -1 (mod 7r) respectively. 
Proof. The polynomial q(X) = XI F 3 satisfies v (q'(73)) - 3 and q(73) - 

? 6(l E) =-0 (mod 7T7) provided that e = ?1 (mod 7) . O 

It follows that E is a ramified cubic extension of Q3(V3) or Q -3). 
Hence, it can be classified in the way shown by Amano in [1]. We do not write 
down the complete classification but, rather, show how to handle the specific 
examples we have of this case. They are the three examples presented in Table 
X, two of them with A = 6 and one with A = 7 and f0 (T) of type Z. In these 
examples we chose the truncation parameter i = 18 or 20 according as A = 6 
or 7, respectively. This enables us to identify E and compute To mod 70. As 
mentioned in ?2, we never have E = Q3(CO); hence, we do not compute so. 

Put p = V/(-I)z3, where z = 0 or 1. By Proposition 4, E = Q3 (p, 7r), 
where ir is a zero of an Eisenstein polynomial r(X) E Q3(p)[X]. From [1] we 
find that it suffices to consider the polynomials 

r(X) = X3 - apX2 - bpX - cp, 

where a, b, c E Z and c 1_ (mod p). Let K be the unit in Q3 (p) such that 
p = K7r3 . A similar argument as before yields K = 1/(c + bz + a7r2), and we 
may write 

00 

K 1+ZKv 7, Kv E {o, ?1}. 

V=1 

With the usual notation To = ? x> rv (where xl :A 0) we get from & (7Z8) 
the congruences 

(4) (-1)zaol + a60 0, -2ao1K1 (all + (-1)za7o)XI (mod 3). 

The former determines p, and the latter tells us, first, whether or not Kc = 0. 
If Ki I: 0-as is the case in our examples-then b 4 0, and we arrive, by [1], 
at the polynomials 

r(X) = X3 i: pX_ p 

which generate six ramified extensions of Q3(p). The six zeros of f6(T) are 
contained in these fields, one in each. It also follows that K = 1/(1 ? 7) and 
so, in particular, K2 = 1. Hence the approximation congruence F(7r9) enables 
us to compute x2. 

In case one is interested just in knowing whether or not E = Q(C9), it is 
worth noting that (4) yields the following necessary conditions for this equality: 
ao1 = a60, all = a70. Indeed, we have z = 1 and K1 = 0 in this case. 

In our examples obtained for the characters (3, -7108, 1) and (3, -20692, 
1), the first congruence in (4) gives the result z = 0 and z = 1, respectively, 
and the second gives K1 = x1 . For the third character (3, -1832, 1) we find 
that z = 0 and K1 = -xl . See Table X for the full result. 
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TABLE VI. X = 2, aO 0, S1,2 zeros of Lp(s, Oqf?) 

(3, 653, 0) (3, 1153, 0) 

0.21100 0.0200 ? 0.00007 0.21100 0.11000 0.0110 ? 0.00007 0.11000 
0.00102 0.0022 ? 0.11117 0.0202 0.00210 0.0010 ? 0.1011O 0.0202 
0.02001 0.0222 ? 0.00117 2.212 0.01002 0.0111 ? 0.00I0i 1.202 
0.00022 0.0002 ? 0.02117i 1.01 0.00012 0.0001 ? 0.02127r 2.01 
0.00220 0.0021 ? 0.00027r 2.0 0.00121 0.0010 ? 0.00027r 0.1 
0.00002 0.0000 ? 0.000Ii 2. 0.00001 0.0000 ? 0.00017 2. 
0.00020 0.0002 ? 0.00007 0.00012 0.0001 ? 0.00007 

7f = v,-f37 = V 
TI,2 = 0.12?2.27 TI,2 = 0.12?2.27 

S1,2 = 0.0 ? (2.)r SI 2 = 0.0 ? (1.)ir 

(3, -379, 1) (3, -1336, 1) 

0.20000 0.0000 ? 0.1 100i 0.20000 0.22000 0.0100 ? 0.2100,r 0.22000 
0.00111 0.0002 ? 0.22127r 0.0121 0.00102 0.0020 ? 0.12207r 0.0100 
0.02122 0.0200 ? 0.00227r 2.210 0.02212 0.0210 ? 0.00017 2.200 
0.00112 0.0012 ? 0.01017 2.21 0.00122 0.0010 ? 0.02007r 2.00 
0.00200 0.0022 ? 0.00027r 1.1 0.00210 0.0020 ? 0.00027r 0.1 
0.00002 0.0000 ? 0.00027r 0. 0.00000 0.0000 ? 0.000Ii 0. 
0.00021 0.0002 ? 0.0000 r 0.00022 0.0002 ? 0.00007 

7f = 7f =V 
TI, 2 = 0.20 ? 2.17i T. 2 = 0.20 ? 2.07i 

SI 2 = 1.0 ? (1.)ir St 2 = 1.0 ? (0.)ir 

TABLE VIa. A = 3, S2,3 zeros of Lp(s, Oq/?) 

(3, -827, 1) _3__704___ 

0 0.0200?0.01227 T 0 (3, 7804, 0) 
0.012222 0.0112 ? 0.02227r 0.200011 0.01100 0.0020 ? 0.02127r 0.01100 
0.001201 0.0010 ? 0.00217r 0.02011 0.01220 0.0120 ? 0.0222ir 0.1010 
0.000021 0.0000 ? 0.0010r 2.2100 0.00000 0.0000 ? 0.000lr 0.112 
0.000120 0.0001 ? 0.0001r 0.022 0.00020 0.0002 ? 0.00217r 1.21 
0.000010 2.02 0.00021 0.0002 ? 0.0000r 2.2 
0.000011 1.2 0.00000 2. 
0.000001 1. 0.00001 

T, = 0, S1 = 0 = 0.2100, s, = 2.001 

7f = 7f = 

T2, 3 = 0.0000 ? 2.2107r T2, 3 = 0.1 ? 2.0r 

S2, 3 = 1.011 ? 0.I1ir S2,3 = (0.) ? (1.)ir 
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TABLE VII. A = 2, aO :? 0 , vp(T, - T2) > 2 

(3, 13564, 0) (3, 13784, 0) (3, -11188, 1) 
0.011000 0.0110000 0.022000 0.0220000 0.011000 0.01100000 
0.010111 0.112210 0.011110 0.222100 0.011000 0.1222201 
0.012011 1.21101 0.020221 2.11112 0.010000 1.012021 
0.001102 1.1101 0.001212 2.0212 0.002112 2.12101 
0.001210 1.221 0.002001 0.121 0.001021 1.2000 
0.000010 1.02 0.000010 0.02 0.000010 2.100 
0.000101 1.1 0.000221 2.2 0.000112 0.12 
0.000000 0. 0.000000 2. 0.000002 0.1 
0.000002 0.000001 0.000002 0. 
0.000002 0.000002 0.000001 
0.000002 0.000001 0.000002 

=X v/2 =4 v/3 = l2 
T1,2 = 0.10201 ? 0.011104 T1 2 = 0.10122 ? 0.0112i TI,2 = 0.102122 ? 0.0120014 

SI,2 = 1.01 I ?0.11204 S1,2 = 2.1221 ? 0.201 SI ,l2 = 1.01000 0.121214 

TABLE VIJa. A = 3, ao= 0 , vp(T2 - T3) > 2 

(3, -2564, 1) (3, -8804, 1) 

0 0 0 0 
0.00201120 0.0122220 0.00101202 0.0211122 
0.00200201 0.211210 0.00220021 0.222110 
0.00211101 1.00101 0.00111021 2.11102 
0.00001112 1.2000 0.00021121 0.0100 
0.00000110 2.012 0.00002121 0.120 
0.00001222 1.20 0.00002022 0.21 
0.00000112 1.2 0.00000111 1.0 
0.00000010 1. 0.00000010 0. 

0.00000100 0.00000212 
0.00000001 0.00000012 
0.00000000 0.00000001 

0.00000001 0.00000002 

T1,= 0, S1= T1 = 0, s1= 

7r = 237r = 
T2, 3 = 0.20112 0.0101z T2, 3 = 0.10001 i 0.01027z 

S2 , 3 = 1.2022 ? 0.2107z S2, 3 = 2.2121 ? O.2207z 
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TABLE VIII. Various types of the Newton polygon 

(5, -4371, 1) (1 1, -723, 1) 
(5, 3101, 0) 0 0 0 0 

0.004012 0.0040120 0.000303 0.003204 0.0009aaa 0.0082679 
0.040113 0.423301 0.003234 0.31301 0.008a109 0.745759 
0.031110 3.21012 0.003302 3.1142 0.0062906 1.47320 
0.004403 1.4114 0.000003 3.404 0.00084a3 6.7683 
0.000342 1.234 0.000021 1.30 0.0000657 0.116 
0.000013 1.31 0.000003 4.1 0.0000028 8.70 
0.000042 4.2 0.000001 0. 0.0000006 1.3 
0.000003 0. T =0, s = 0 T, =0, s, = 0 

Ti = 0.040243 T2 = 0.04102 T2 = 0.0246697 
sI = 0.42140 S2 = 0.4240 2 = 0.33543a 
T2 = 0.224113 T3 =0.44340 T3 =0.42a5014 
S2 = 2.12443 S3 = 4.2101 S3 = 6.7852a0 

(5, -7816, 1) 

(5, 12056, 2) 0.0002022 0.002044 
(3, 1901, 0) ~ 0.0042412 0.0042412 0.0001311 0.01232 

0.0020 0.0020 0.0004221 0.004001 0.0030211 3.0030 
0.0012 0.022 0.0134244 1.22140 0.0003443 1.132 
0.0120 1.11 0.0021304 1.1110 0.0000320 1.30 
0.0010 1.0 0.0000210 0.112 0.0000011 2.3 
0.0011 0. 0.0000002 1.21 0.0000013 3. 
0.0000 0.0000302 4.21 0.0000003 3. 
0.0001 0.0000043 1. T, = 0, SI = 0 

ir =v 3r =v 5r =x/3 
T1, 2 = 0.020 ? 0.117r T1, 2 = 0.000443 ? 0.104207r T2, 3 = 0.04202 ? 0.l1211r 
SI 2 = 0.12 ? 2.07r SI 2 = 0.02023 ? 1.22217r S2, 3 = 0.4414 ? 1.2307r 

(3, -25528, 1) 

0.02200 0.02200 
0.02221 0.2210 (5, 4924, 2) 

(3, 3512, 0) 0.00120 0.221 0.0313321 0.0313321 
0.001020 0.22 0.0312032 I0.221213 

0.01100 0.01100 0.00002 1? 0.0020004 0.12002 
0.01022 0.2101 . . 0.0024102 3.0430 
0.00111 0.010 T1 = 0.2120 0.0001013 4.004 
0.00122 1.12 

SI = 2.111 0.0000134 3.13 
0.000 12 0.2 0.0000020 3.2 
0.00000 2. X = 3 0.0000044 0. 
0.00001 3T23 = 0.0 ? 0.1Or + (0.)ir2 ? (0.)ir3 0.0000001 

T, = 0.1120 
325>, 

= 0.0 ? 0.2ir + (o.)7r2 ? (0.)ir3 T, = 0.110124 
SI = 2.121 2 3 = 4.43041 

X~~~~~~~~~~r =- ( 44 
' r3 7r = v 3 ~ 7r =v/5- 

T2,3 = 0.1 ? 1.2ir 3T4,5 = 0.0 ? .OIr' + (0.)fr 2 ? (0.)fr 3 T2,3 = 0.22 ? 1.22ir 
= (1.) ? (12.)ir 3255 = 0.0 ? 0.2ir' + (0.)7r'2 ? (0.)r3 52,3 = 1.3 ? 44.3ir 

(3, 1541, 0) 

(7, -4072, 5) 0.01100 0.01100 

0.0015040 0.0015040 0.00212 0.0121 
0.0334332 0.245460 0.00221 0.210 
0.0033433 0.24546 0.000021 0.20 (3, 4204, 0) 
0.00210235 20.3454 0.00002 1.2 
0.005045 2.0424 0.00001 0. 0.01100 0.01100 
0.0006203 0.120 0.00001 0.00121 0.0101 
0.0000424 30.1 0.00012 0.022 
0.000000614 3.0 7 -3 0.00022 0.02 

Tl = ( .0352103 TI 2 =0.1 ? (0.)r + (1.)i (1.)|r3 0.00012 1.2 
T, =0.0352103 0.00000 1. 

5S = 0.230602 SI,2 -?1/7r (mod 7r) 0.00002 
7r = 37 =4:4/ t3 7r =v'3, v=/2 

T2,3 = 0.101 ? 3.457r T3 4 0.1 ? (O.)7r' + (1.)7r'2 ? (1.)7r'3 T1,2 = 0.0 + ((1.) ? (1.)>)7r 
52,3 = 0.163 ? 22.27r s3,4 ? 1/r' (mod 7r') T3 4 = 0.0 -((1.) ? (1.)4)ir 
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TABLE IX. Zeros in wildly ramified cubic extensions 

(3, -3592, 1) (3, 1781, 0) (3, 281, 0) 
0.2200000 0.2200000 0.0110000 0.0110000 0.2000000 0.2000000 
0.0221120 0.212102 0.0011021 0.021120 0.0200122 0.100111 
0.0020012 0.12201 0.0020221 0.22001 0.0010010 0.20200 
0.0002221 2.1012 0.0020210 1.2100 0.0001011 1.1011 
0.0000201 1.201 0.0002012 0.201 0.0001002 0.020 
0.0000000 1.20 0.0000011 1.20 0.0000221 1.22 
0.0000121 2.0 0.0000222 0.2 0.0000121 1.0 
0.0000002 0. 0.0000010 1. 0.0000021 2. 
0.0000001 0.0000001 0.0000002 
0.0000001 0.0000011 0.0000001 

0.0000001 0.0000002 

lrk zero of X3-3X - 3 rk zero of X3-3X-3 rk zero of X3 + 3X - 3 
(k= 1, 2, 3), (k = 1, 2, 3), (k =1, 2, 3), 

Tk -7rk -7rk -7rk + Tk -7r-k 7rk 7rk Tk 7rk + 7rk + 

(mod 7r ) (mod 7r ) (mod 7r ) 

(3, 2504, 0) (3, 4172, 0) (3, -1144, 1) 

0.2200000 0.2200000 0.1210000 0.1210000 0.2200000 0.2200000 
0.0120012 0.220202 0.0200111 0.110101 0.0210200 0.201001 
0.0012201 0.00020 0.0011020 0.21110 0.0002002 0.21221 
0.0010020 1.1112 0.0022221 2.0022 0.0001222 2.1120 
0.0002102 1.112 0.0000022 2.212 0.0002010 2.111 
0.0000220 1.02 0.0000212 1.12 0.0000010 2.11 
0.0000001 2.2 0.0000221 2.0 0.0000111 1.1 
0.0000012 1. 0.0000001 2. 0.0000001 2. 
0.0000002 0.0000002 0.0000000 
0.0000022 0.0000011 0.0000002 
0.0000001 0.0000001 

i zero of X3 + 3X2 12, rk zero of X3-12 rk zero of X3 + 6 

T, r- 7r3, (k I , 2, 3), (k i 1, 2, 3), 
T2 _ir +iro2 +iC3, Tk -Jk + Trk Tk - 7rk + 7rk 

T3 _r-r2 -ir3 (modir4) (mod 7r) (mod 7r) 

(3, -311, 1) (3, -2132, 1) 
0 000 
0.0212121 0.102010 0.00 1001 0.021101 
0.0021022 0.02200 0.0022202 0.21102 
0.0012211 0.2212 0.0002112 0.21210 
0.0001120 2.102 0.00021012 0.0012 
0.0000202 2.22 0.00002212 1.011 
0.0000020 1.0 0.0000221 2.0 
0.0000011 0. 0.0000021 0. 
0.0000001 0.0000001 
0.0000020 0.0000001 
0.0000002 0.0000001 

T1 = 0, s1 = 0 T1 = 0, s= 0 

irk zero of X3 + 3X-3 T2 = 0.211, S2 = 1.12 

(k = 2, 3, 4), 7rk zero of X3 + 3X -3 
Tk - Jrk +ir2 + ?k (k 3,4, 5), 

(mod ik) Tk - Jrk (mod 7rk) 
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TABLE X. Zeros in wildly ramified sextic extensions 

(3, -1832, 1) 
0 0 

(3, -7108, 1) 0.011101022 0.22110110 

0.12100000 0.12100000 0.001122211 0.0101101 
0.02010022 0.2122012 0.002000211 0.110101 
0.00111022 0.002212 0.000112211 0.21001 
0.00112110 0.21220 0.000010122 0.1112 
0.00012211 0.0210 0.000012011 0.221 
0.00002012 0.201 0.000002222 1.00 
0.00001002 2.12 0.000000211 1.0 
0.00000100 2.1 0.000001201 1 
0.00000022 1. 0.000000202 
0.00000211 0.000000022 
0.00000022 0.000000010 
0.00000001 0.000000002 
0.00000001 T1 =0,s1 = 

7rI, 7r2, 7r3 zeros of X3-V3X-XV3 72, 7(3, 7(4 zeros of X3-VX--X V- 

T1-- t + 712 (mod 7r3) 2 + 7(2 (mod 7r 3) 

T -7r, + 7(i (mod T2 3) 7'3 73 + 7t2 (mod 2) 

T3 -7r3+7(3 (mod 7l3) T4 7r4+7c (mod 7 2 ) 
7r4 7( 5, 7t6 zeros of X3 + V3 X -V 75, 6, 7(7 zeros of X3 + VX-X V 

7'4 _ zz + 7(42 (mod 7r3) 2-7( + 7(5 (mod 7(g3) 

7'5 z5 + 752 (mod 7r3) 2(6 + 7(2 (mod 7(t3) 
2 + 7(6 (mod 7(3) 27 -7(7 + 72 (mod 7(3) 

(3, -20692, 1) 

0.12100000 0.12100000 
0.00011101 0.0012000 
0.00002220 0.000102 
0.00000201 0.01201 
0.00000201 0.0020 
0.00000011 0.010 
0.00000121 1.00 
0.00000020 2.0 
0.00000001 2. 
0.00000001 

7tl, 7t2, 73 zeros of X3 - \Z-X - 

T, _-7r,- 7(2 (mod 7i3) 

I'2-- - 7(2(mod 7(3) 

7(3 _ z (mod 7l3) 

7(4, 7(5, 76 zeros of X3 + VTA X - 

T4 7_4 - z (mod 42) 

T5 7(5 - 7(2 (mod 7(g) 
2- 7( (mod 7(3) 
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